Abstract:Existing multi-behavior recommendations tend to prioritize performance at the expense of explainability, while current explainable methods suffer from limited generalizability due to their reliance on external information. Neuro-Symbolic integration offers a promising avenue for explainability by combining neural networks with symbolic logic rule reasoning. Concurrently, we posit that user behavior chains inherently embody an endogenous logic suitable for explicit reasoning. However, these observational multiple behaviors are plagued by confounders, causing models to learn spurious correlations. By incorporating causal inference into this Neuro-Symbolic framework, we propose a novel Causal Neuro-Symbolic Reasoning model for Explainable Multi-Behavior Recommendation (CNRE). CNRE operationalizes the endogenous logic by simulating a human-like decision-making process. Specifically, CNRE first employs hierarchical preference propagation to capture heterogeneous cross-behavior dependencies. Subsequently, it models the endogenous logic rule implicit in the user's behavior chain based on preference strength, and adaptively dispatches to the corresponding neural-logic reasoning path (e.g., conjunction, disjunction). This process generates an explainable causal mediator that approximates an ideal state isolated from confounding effects. Extensive experiments on three large-scale datasets demonstrate CNRE's significant superiority over state-of-the-art baselines, offering multi-level explainability from model design and decision process to recommendation results.
Abstract:Chain-of-thought (CoT) prompting improves LLM reasoning but incurs high latency and memory cost due to verbose traces, motivating CoT compression with preserved correctness. Existing methods either shorten CoTs at the semantic level, which is often conservative, or prune tokens aggressively, which can miss task-critical cues and degrade accuracy. Moreover, combining the two is non-trivial due to sequential dependency, task-agnostic pruning, and distribution mismatch. We propose \textbf{CtrlCoT}, a dual-granularity CoT compression framework that harmonizes semantic abstraction and token-level pruning through three components: Hierarchical Reasoning Abstraction produces CoTs at multiple semantic granularities; Logic-Preserving Distillation trains a logic-aware pruner to retain indispensable reasoning cues (e.g., numbers and operators) across pruning ratios; and Distribution-Alignment Generation aligns compressed traces with fluent inference-time reasoning styles to avoid fragmentation. On MATH-500 with Qwen2.5-7B-Instruct, CtrlCoT uses 30.7\% fewer tokens while achieving 7.6 percentage points higher than the strongest baseline, demonstrating more efficient and reliable reasoning. Our code will be publicly available at https://github.com/fanzhenxuan/Ctrl-CoT.
Abstract:Providing timely, targeted, and multimodal feedback helps students quickly correct errors, build deep understanding and stay motivated, yet making it at scale remains a challenge. This study introduces a real-time AI-facilitated multimodal feedback system that integrates structured textual explanations with dynamic multimedia resources, including the retrieved most relevant slide page references and streaming AI audio narration. In an online crowdsourcing experiment, we compared this system against fixed business-as-usual feedback by educators across three dimensions: (1) learning effectiveness, (2) learner engagement, (3) perceived feedback quality and value. Results showed that AI multimodal feedback achieved learning gains equivalent to original educator feedback while significantly outperforming it on perceived clarity, specificity, conciseness, motivation, satisfaction, and reducing cognitive load, with comparable correctness, trust, and acceptance. Process logs revealed distinct engagement patterns: for multiple-choice questions, educator feedback encouraged more submissions; for open-ended questions, AI-facilitated targeted suggestions lowered revision barriers and promoted iterative improvement. These findings highlight the potential of AI multimodal feedback to provide scalable, real-time, and context-aware support that both reduces instructor workload and enhances student experience.
Abstract:While reinforcement learning (RL) shows promise in training tool-use large language models (LLMs) using verifiable outcome rewards, existing methods largely overlook the potential of explicit reasoning rewards to bolster reasoning and tool utilization. Furthermore, natively combining reasoning and outcome rewards may yield suboptimal performance or conflict with the primary optimization objective. To address this, we propose advantage-weighted policy optimization (AWPO) -- a principled RL framework that effectively integrates explicit reasoning rewards to enhance tool-use capability. AWPO incorporates variance-aware gating and difficulty-aware weighting to adaptively modulate advantages from reasoning signals based on group-relative statistics, alongside a tailored clipping mechanism for stable optimization. Extensive experiments demonstrate that AWPO achieves state-of-the-art performance across standard tool-use benchmarks, significantly outperforming strong baselines and leading closed-source models in challenging multi-turn scenarios. Notably, with exceptional parameter efficiency, our 4B model surpasses Grok-4 by 16.0 percent in multi-turn accuracy while preserving generalization capability on the out-of-distribution MMLU-Pro benchmark.
Abstract:Modern Large Multimodal Models (LMMs) have demonstrated extraordinary ability in static image and single-state spatial-temporal understanding. However, their capacity to comprehend the dynamic changes of objects within a shared spatial context between two distinct video observations, remains largely unexplored. This ability to reason about transformations within a consistent environment is particularly crucial for advancements in the field of spatial intelligence. In this paper, we introduce $M^3-Verse$, a Multi-Modal, Multi-State, Multi-Dimensional benchmark, to formally evaluate this capability. It is built upon paired videos that provide multi-perspective observations of an indoor scene before and after a state change. The benchmark contains a total of 270 scenes and 2,932 questions, which are categorized into over 50 subtasks that probe 4 core capabilities. We evaluate 16 state-of-the-art LMMs and observe their limitations in tracking state transitions. To address these challenges, we further propose a simple yet effective baseline that achieves significant performance improvements in multi-state perception. $M^3-Verse$ thus provides a challenging new testbed to catalyze the development of next-generation models with a more holistic understanding of our dynamic visual world. You can get the construction pipeline from https://github.com/Wal-K-aWay/M3-Verse_pipeline and full benchmark data from https://www.modelscope.cn/datasets/WalKaWay/M3-Verse.
Abstract:Ancient people translated classical Chinese into Japanese by annotating around each character. We abstract this process as sequence tagging tasks and fit them into modern language technologies. The research of this annotation and translation system is a facing low-resource problem. We release this problem by introducing a LLM-based annotation pipeline and construct a new dataset from digitalized open-source translation data. We show that under the low-resource setting, introducing auxiliary Chinese NLP tasks has a promoting effect on the training of sequence tagging tasks. We also evaluate the performance of large language models. They achieve high scores in direct machine translation, but they are confused when being asked to annotate characters. Our method could work as a supplement of LLMs.
Abstract:This paper describes the OUNLP system submitted to the TSAR-2025 Shared Task (Alva-Manchego et al., 2025), designed for readability-controlled text simplification using LLM-prompting-based generation. Based on the analysis of prompt-based text simplification methods, we discovered an interesting finding that text simplification performance is highly related to the gap between the source CEFR (Arase et al., 2022) level and the target CEFR level. Inspired by this finding, we propose two multi-round simplification methods and generate them via GPT-4o: rule-based simplification (MRS-Rule) and jointly rule-based LLM simplification (MRS-Joint). Our submitted systems ranked 7 out of 20 teams. Later improvements with MRS-Joint show that taking the LLM simplified candidates as the starting point could further boost the multi-round simplification performance.
Abstract:Diffusion models like Stable Diffusion have become prominent in visual synthesis tasks due to their powerful customization capabilities, which also introduce significant security risks, including deepfakes and copyright infringement. In response, a class of methods known as protective perturbation emerged, which mitigates image misuse by injecting imperceptible adversarial noise. However, purification can remove protective perturbations, thereby exposing images again to the risk of malicious forgery. In this work, we formalize the anti-purification task, highlighting challenges that hinder existing approaches, and propose a simple diagnostic protective perturbation named AntiPure. AntiPure exposes vulnerabilities of purification within the "purification-customization" workflow, owing to two guidance mechanisms: 1) Patch-wise Frequency Guidance, which reduces the model's influence over high-frequency components in the purified image, and 2) Erroneous Timestep Guidance, which disrupts the model's denoising strategy across different timesteps. With additional guidance, AntiPure embeds imperceptible perturbations that persist under representative purification settings, achieving effective post-customization distortion. Experiments show that, as a stress test for purification, AntiPure achieves minimal perceptual discrepancy and maximal distortion, outperforming other protective perturbation methods within the purification-customization workflow.
Abstract:Recent studies integrate Low-Rank Adaptation (LoRA) and Mixture-of-Experts (MoE) to further enhance the performance of parameter-efficient fine-tuning (PEFT) methods in Large Language Model (LLM) applications. Existing methods employ \emph{homogeneous} MoE-LoRA architectures composed of LoRA experts with either similar or identical structures and capacities. However, these approaches often suffer from representation collapse and expert load imbalance, which negatively impact the potential of LLMs. To address these challenges, we propose a \emph{heterogeneous} \textbf{Mixture-of-Adapters (MoA)} approach. This method dynamically integrates PEFT adapter experts with diverse structures, leveraging their complementary representational capabilities to foster expert specialization, thereby enhancing the effective transfer of pre-trained knowledge to downstream tasks. MoA supports two variants: \textbf{(i)} \textit{Soft MoA} achieves fine-grained integration by performing a weighted fusion of all expert outputs; \textbf{(ii)} \textit{Sparse MoA} activates adapter experts sparsely based on their contribution, achieving this with negligible performance degradation. Experimental results demonstrate that heterogeneous MoA outperforms homogeneous MoE-LoRA methods in both performance and parameter efficiency. Our project is available at https://github.com/DCDmllm/MoA.
Abstract:Inspired by the great success of Masked Language Modeling (MLM) in the natural language domain, the paradigm of self-supervised pre-training and fine-tuning has also achieved remarkable progress in the field of DNA sequence modeling. However, previous methods often relied on massive pre-training data or large-scale base models with huge parameters, imposing a significant computational burden. To address this, many works attempted to use more compact models to achieve similar outcomes but still fell short by a considerable margin. In this work, we propose a Hybrid Architecture Distillation (HAD) approach, leveraging both distillation and reconstruction tasks for more efficient and effective pre-training. Specifically, we employ the NTv2-500M as the teacher model and devise a grouping masking strategy to align the feature embeddings of visible tokens while concurrently reconstructing the invisible tokens during MLM pre-training. To validate the effectiveness of our proposed method, we conducted comprehensive experiments on the Nucleotide Transformer Benchmark and Genomic Benchmark. Compared to models with similar parameters, our model achieved excellent performance. More surprisingly, it even surpassed the distillation ceiling-teacher model on some sub-tasks, which is more than 500 $\times$ larger. Lastly, we utilize t-SNE for more intuitive visualization, which shows that our model can gain a sophisticated understanding of the intrinsic representation pattern in genomic sequences.